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Equations describing the motion of a continuous conducting medium in pre- 
scribed electroma~etlc and gravitational fields are obtained most simply 
by variation of the appropriate Lagranglans. 

As a result, the variational principle leads to a second order scalar 
equation; this affoeds significant advantages in the analysis of the motion 
of a medium as compared with the anal~sls of the customary equations of momen. 
tum, mass and energy conservation. 

The Lagrangian of an electromagnetic field is well known to have the form 
[I]: 

Le : - -  F i k F i k  / t6~ ,  Fik  ~ OAk / OX i -  &4i  / Ox ~ (0.1) 

Here  Ftk and At a r e  t h e  t e n s o r  and q u a d r i - p o t e n t i a l  o f  t h e  e l e c t r o m a g -  
n e t i c  f i e l d .  

We have  f o r  t h e  L a g r a n g i a n  o f  a c o n t i n u u m  i n  t h e  c a s e  o f  i s e n t r o p i c  q u a s i -  
potential flow [2] 

L m = p = (~ ,  - -  E )  / v = [~, V - -  gi~Sisk - -  E] / v ~0.2) 

Here S is the effect for matter, E ise mass energy density, ~ the 
specific volume, p the pressure, w the heat content, g~k the metric ten- 
sor components; furthermore 

S i = OS / Ox i, cS t : wu  i (0.3) 

where c is the velocity of light, u~ the quadri-velocity. 

We will seek the equation of motion for the established form of the 
Lagra~lan for a continuum exactly as for the field 

( V "  - -  g L m )  - -  - ~ ~ ( V  - g L ~ )  _ 0 (0.4) 
OS Ox k OS~ 

where g is the determ~t of the metric tensor gt~ • In the case when 
an electromagnetic field is present, it is necessary to replace ,c~,by 
wut-~-(e/m) A~, after the evaluation of the derivatives, where Le/m) is the 
mean ratio of the particle charge to the mass. 

If there is no electromagnetic field, we obtain the continuity equation 
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o V- - -gs  ~ o V-- -~ .k  
- -  - -  0 o r  - -  0 ( 0 . 5 )  

Ox k vw Ox k v 

by substituting (0.2) into (0.~). 

Since v~(w--c~c2) -I/(k-l) for pv k ~ const , then (0.2) may be written as 
k 

L m ~ p = cons t  [ - -  ~c + V -- gikSiSk] k-1 (0.6) 

Analogously, a more complex equation is hence obtained from (0.4) 

1 

(V--  =o  (o.7) 

However, It is convenient to use the sound equation instead of (0.7). 

To obtain thls latter, let us write (0.5) as 

s "  o 1,~ 1 / - -  g o ( s " / v , ~ , )  
vw O~ ,~ " + Oz ~ - 0 ((I.8) 

Since 

d In w o) 2 
- ( 0 . 9 )  d | n  v c 2 

is the relativistic velocity of sound, we then find from (0.8) where w 

2 (Sn sn) S/+StO ] + +Ox--W = 

Equation (O.lO) willbe the original in the analysis of different examples 
of the motion Of a relatlv stic medium in the speclal theory of relativity 
(Section i) and the spherically symmetrical motion in a Schwarzschlld gra- 
vitational field (Section 2). It is investigated by themethod of charac- 
teristics. 

It is convenient to use (O.lO) even lnthe absence of a gravitational field 
if the calculations are carried out in any curvillnear coordinate system. 

I. As examples of the utilization of (O. lO), let us conslser one-dimen- 

sional nonstatlonary waves (Riemann waves) and two-dlmenslonal plane station- 

ary gas flow. 

Let us use a Galilean metric for the mentioned problems 

ds2  = c2dt2 - -  ( d x ~ )  2, - - g o o  = g11 = g22 - -  g33 -= t ( a =  t ,  2, 3) ( 1 . 1 )  

For the chosen metric O In,L- g / Ox t : 0 and from (O.lO) we have 

~ ( 1 - - ~ 2 ~ s z [ O S k  S k OS~ S k ]  0 ( 1 . 2 )  2 -~- 3/(S~S ~) + 7 1  [ ~  + a~--7 = 

In the one-dlmenslonal unsteady flow case Z, k - O, l, in which S:= S I 

and So=-S ° for the chosen metric. Hence, after elementary manipulations, we 

find from (1.2) 

~ ( 8 1 1  8 0 ~  (812 So  2) + ( ]  - -  c-~- j (So23oo - -  23o318Ol -~ $12811) : 0 

Since 

311 = OS 1 / Ox, Soo 
we then find from the latter equation 

= OS o / 0 %  T : c t  
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(3 .:3) 

c ~  ox o~ (St~ - -  S°2) ÷ , 7C o--C - -  ~ -k St" -G: = 0 

Using a known method of change of variables, we can transform to a linear 

equation from (1.3). To do this, let us divide (1.3) by the Jacoblan 

0 (S0, Sl) / 0 (T, x), ~ by first assuming it to be different from zero. 

Hence we obtain (I.~) 

(03 

The effect S la a quasl-potentlal [2], hence OS o / 0z ~ 0X 1 / 0T. This 

equality may be written in the form of an equality of Jacoblans, which will 

yield after having been divided by 0 (S0, SI) / 0 (T, x) 

~ _ ox (1 .5)  
0S1 COSo 

For the sequel it is expedient to introduce a ftu,ctlon y such that 

"r = OT / aSo = qso, x - O~g / OS 1 = ~ ,  ( t . 6 )  

Then (1.4) w i l l  become (I.7) 

o~ ~(.q ~lg n ~_L~, (~'oo - -  ~'~,) ( s d  - -  s J )  + (1 - -  - ~ / , ~ ,  + &~Woo + 2Seg~Wo~) = 0 

In case the Jacoblan O (So, SI) / 0 (T, x) equals zero, the change of vari 

ables in (1.3) is impossible. However, the very fact that the Jacoblan is 

zeo means that S o -~ /(81). Hence 

O(Sl ,  So) ~ O S ,  (%% __ O,Sh &% _ _ 0  
O (x. "r) il~" aT aT Ox 

which becomes, by virtue of the equality ~S 0 / ax = 031 / OT 

~s,~ ,:;& o& _ 0 ( i . 8 )  
dS1 O~r ~: 

The solution of the latter equation is 

x q- TdS o / d S  1 = F (St) ( t .9 )  

w h e r e  F(S  L ) i s  a n  a r b i t r a r y  f u n c t i o n  o f  S t d e t e r m i n e d  f r o m  t h e  b o u n d a r y  

c o n d i t i o n s .  I n  o r d e r  t o  d e t e r m i n e  t h e  f o r m  o f  t h e  f u n c t i o n  So= j ' ( S t  ) ,  l e t  

u s  u s e  t h e  e q u a l l t i e s  

OSo dSo 0S1 88o dSo cOSt 
3x dS1 Ox ' 3"¢ dSt cOT 

to help us find from (1.3) 

cOS~ 

o. ( o.)] 
c2 dSx ( $ 1 ~ -  S ° ~ ) - 2 S ° $ 1  1 - - ~ -  = 0  

Hence, taking (1.8) into account, we obtain an equation to determine So 

as a function of S, 
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c~ d~o c2 $1~) 0 (1.10) 

Before solving (i.I0), let us examine the equation of plane stationary 

flow of a relativistic gas. In form, this latter will agree with the equa- 

tions for one-dimenslonal unsteady flow. Writing these equations Jointly, 

let us seek the general solution of the problems under consideration. 

As is known, the action function in the case of stationary flow may be 

written thus S = -- w0t ~- S (z ~) (1.11) 

Here a~. ~ are the components of the conventional velocity 

cS 0 = - -  w 0 = - -  w / O, S l  = wo a l  / c 2, $2 = woa2 / c 2 

0 = ] /1  - -  a 2 / c  2 (1.t2) 

Substituting (1.11) into (1.~) and taking into account that (see (1.12)) 

So ° = - Soo = O, S 1 = S  1, S~. = S 2, S o S  ° =  - - S o  ~ = - -  Wo 2 / c 2 

we find the equation for plane stationary flow 

co~c..__~_ ~-~ { OSl + '-~y \ ($12 + $22 __ -Y/w°2 ~ + 

( os1 os2 q 2 o82 + ( 1 - - ~ ) \  0 S12 "-~-~--y ,.-,2 +2S~$2-g -~-1=0  (t.13) 

Here we use the equality 

0S2 / Ox = OS 1 / @ (1.14) 
Chs~Ir~ the variables in (1.13) and introducing the function ~ by vir- 

tue of (1.14) so that Z = @~I f / @S 1 = ~fl, Y = ~IIf / ~$2 = ~f2, we obtain 

WO 2 "~ 
+ ,Fix) + + 

( 1 -  co~ ~/S 2~ + ~ - )  ~ 1 "~2 -4- $221gll 2S1S2~F12) = 0 (t.t5) 

If the Jacoblan 0 (Si, $2) / 0 (z, y) = 0, the change of variables in 

(1.13) Is impossible. Then, Just as in the case considered earlier, we have 

x + v / = F (t.16) 
and the function Sa = f(S~ ) is found from Equation 

( d,-q~ ~9" (Sl,  + c~ ~ 2 '~-~1J -~-~'2 ~ )  + 2S1S2 ( ~ 1 )  dS' 

( c~ ¢ 2 ~ w ° ~  ---- 0 (1.17) + 

Now, the equations for one-dlmensional unsteady (i.7) and two-dimenslonal 

stationary flow (1.15) may be written as one equation 

(D ~ [~ WO 2 
¢--~(V[313-1- WAll1) ( 812"4- S~2 2 C2 ) + 
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The upper signs in (1.18) correspond to plane stationary flow when ~ = 2, 

x~ ::: I/, $8 ~ $2, the lower si&~as to one-dimensional unsteady flow when 

= 0, x o =  x; S t ~ = S  o . 

Furthermore, let us introduce the notation (see (I.12)) 

S1 ~ - ~ - S ~  ~ ==Wo ~ ( a ~  ~ - !  a2 ~ ) / c  4 ~- Wo~a ~ / c  4 = c~z ~ ( t . t 9 )  

where z = Wo [a I / c ~. 

I t  is now e x p e d i e n t  t o  i n t r o d u c e  t h e  following s u b s t i t u t i o n s  for (1.18): 

S ~  = cz  s i n  ~ ,  S~ a~ 
. . . . . .  ~ ( p  ( ~ = 2 )  

S~ : :  cz  c o s  ~ ,  S~ a~ ( t . 2 0 )  

S O = - - c z ~ o ~ ,  S~ : a ::- t~hq~, u,~ 
S x - - c z  , i ~ V ,  So % -  c~- =: S~ z - -  S0~ : :  c~z~ (~ = O) 

In the new variables (1.20) Equation (1.18) becomes 

~ ~.2~ + zq,-  :~ q , .  _. ~ ~ ( ~,o ,~2 (xt,. z~ _~_ VzZ :t= W'~,,,,) ( i . 2 1 )  
c 2 ~ - - ~ z  "2 z%~ \ - ~ - I  

in which 

x - ~ z s i n ~ - ~ -  V ~ , c o s ~ /  z, y ..... V z c o s ~ - -  V ~ , s i n ~ /  z ( ~ = 2 )  

Equation (1.21) is simplified considerably by the substitution ~ = in z 

c~ - qY~ -i- 1 - -  %" ~ ~ '  - -  2-z2 c~ \ - ~ /  

E q u a t i o n  ( 1 . 2 2 )  may be  s o l v e d  b y  t h e  me thod  o f  c h a r a c t e r i s t i c s .  

L e t  us  now t u r n  t o  s e e k i n g  t h e  s i n g u l a r  s o l u t i o n s  o f  t h e  J o i n t  e q u a t i o n  

of the two problems under consideration. CombJ_~l~g (I.i0) and (1.17) we 

obtain 

F i n d i n g  t h e  r o o t s  of t h e  s q u a r e  o f  t h e  d e r i v a t i v e  d ~ / d ~  1 in (1 .23) ,  we 

f i n d  i n  the c a s e  ~ -~- 0 and c S  0 = - -  w / O, c S  1 ~- y)a / CO 

_ dS_~o = alc±~Ic (1.24) 
dSx t i :  a¢o / c~ 

S u b s t i t u t i n 6  t h e  r e s u l t  o b t a i n e d  i n t o  ( 1 . 9 ) ,  we h a v e  
a / c ~ = / c  z = ~ ~ - ~  + ~ (a) ( 1 . 25 )  

w h i o h ,  a s  i s  k~o~n ,  i s  t h e  e q u a t i o n  o f  r e l a t i v i s t i c  ~ w a v e s .  

According to (I,12), we have f r o m  (1.23) f o r  a " 2 

dSI  d %  

0 . 2 6 ~  
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Here it is assumed that I cl > 

Since (O = (O (tO) = (O (OW0) = 60 (a), we can determine ay as a function 

of a x from (1.26). Substituting the found function day/dax = B (ax) 
into (i.16), we find the solution for generalized Prandtl-Mayer flow 

x + y B  (ax) = F (ax) ( 1 . 27 )  

In conclusion, let us show how the transition from (1.21) to the customary 

(noD_relatlvistic) equation for gas flows is accomplished. 

In the fl = 0 case we have from (1.21) 

0) 2 

c~ z 2 T =  + zq~  = T ~  ( i . 2 8 )  

In the case of nonrelatlvistie gas flow we have 

z = w l c  s = t -F i l c  2, (p = A r t ~ a / c  

d z =  d i / c  2, d ~ d ( a / c )  (a~c)  (t.29) 

Taking account of (1.29), let us write (I.28) as 

(oScS ( t  + 2 i  / c 2) ~Fii --I- (1 + i / c 2) c2qr i = cSTaa 

Hence, as c ~ ~ we have the well-known Riemann equation 

¢os~ii -F T~ = T ~  (1 .30 )  

whose singular solution is 

X = (a ~ (o) t + F (a), da ~ (o d I n  v = 0 ( 1 . 3 t )  

In the 8 = 2 case we have from (1.2l) 

o2 _ (o2 { w o ~ ( T ~ z 2  + ~Fzz + T ¢ , )  ( 1 . 32 )  c -~ ~F=z2 + 1F~z + 1F~ - -  ~ \c~ / 

Since Wc/C 2 ~ I for a << c it then follows from (1.19) that z ~, a/c. 

Using the mentioned limiting values for Wo and z • we obtain the known 

equation describing stationary gas flow from (1.32). 

(Taa + ~F~) (1  - -  (o s / a s) : (oSTaa, ( t . 3 3 )  

For a<< o we have from (1.26) 

dav / dax -= (--  a~ay + (o 1/ a 2 - -  (02) / (a~ s - -  (o2) ( i . 3 4 )  

Substituting (1.34) into (1.27) and assuming F(a ) = 0 , we obtain the 

Prandtl-Mayer solution 

x / y : - -  da u / dax : (a~a u :F (o W a  ~ -  (oz) / ( a ~  _ (os) ( 1 . 35 )  

2. The space-tlme interval in the Schwarzschild gravitational field may 

be written as 

dr" r ~ ( s i n  a Odcp ~ + dO s) (2.  t )  d s =  ( t  - - ~ )  c2dts l - -ro/r  

1.e. the components of the metric tensor are [i] 

goo = - -  (1 - -  r o / r ) ,  g2s = rs 
g n  : It  - -  r o / r) -~, gaa = rS s in~ 0 (2 .2 )  
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To obtain the equation of motion, let us again use (0.10) in which It 

should be taken into account that 

t h e n  we will h a v e  

_- o (g"S, )  
S t l  0 7  

- ,~o I 

7-) - -  28o3181o q_ (~-~S°Kg°°~o/r) a .31_ "el(t --2r zrdr)r° X 

( t - -  ro/r), "]} "~ 0 

S n  = Sx, Soo = 0"~. o, cSx ----- wul,  cSo = WUo 

i -  ro/~ -1- "7- 

(2.3) 

Here w is the relativistic heat content, u, the quadri-velocity. The 

~tity r e is the gravitational radius of the mass producing the gravita- 

tional field. To slm~lify (2.3), let us introduce the new independent vari- 

able 
dE = dr  / ( l  - -  r o / r )  (2.4) 

Then  

ro 

After elementary manip~latlons, (2.3) takes the form 

o,,~,, (s~s~2 _ 23oS~So~ + SooSJ) + 

+ - 7  (,  + 3  , / 4 , j  = o (2.5) 

This equation may easily be investigated by using characteristics which 

have the form 

- -  A21 - -  2gMB -- - -  = 

and the condi t ion  on the c h a r a c t e r i s t i c s  

A ' g ' / e B '  - -  A~) + Dg" = B" ( B '  - -  (2.7) 
Here 

~nd the dot denotes the total derivative with respect to time x ° = o~ • 

Let us transform (2.6) and (2.7) to a form similar to the analogous expres 

sions for the characteristics and the condition on them in the special the- 

cry of relativity. 

To do this, let us write A and B as 

A --  So = gooU°W/C = - -w*/cO 
(2.8) 

B----- S¢  = ( t  - -  r o /  r) S 1 = ( t  - -  r o / r )  g n w u  1 / c  = w ' a / c 2 0  
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Here 
0 = W l  - -  a S / c~ w*  -= V t  - ro / r w ,  a ---- V v l ~  (2.9)  

and u I is the conventional velocity measured in intrinsic time [ i]. Using 

(2.8) we find from the equation of the characteristics (2.6) 

d~ a / c _ + o ) / c  ( 2 . 1 0 )  
d x  ° - -  1 -4-  o)a / c ~ 

The fundamental effect of the approximation in the Schwarzschild sphere 

is Been from the obtained relationship. In fact, for gab moving to the cen- 

ter (a---a) we find from (2.10) 
x0 

~ _ _ ~ , _ ( r _ _ r , ) _ . } _ r o l  n ( r - - to  1 = _ ~ a / c ~ o ) / c  
\ r ' - -  ro/ ~ -i-Z ~afc~ dx°' 

xo" 

where r '  is the value of the coordinate at the time xo'= of; ' .  

Because of the finiteness of the integrand, we have that 

°l I t ~ - - c l n  - - - - t  - . c o  ~or r--->ro 
ro 

T h i s  l a t t e r  means t h a t  any p e r t u r b a t i o n  b e i n g  p r o p a g a t e d  a l o n g  c h a r a c t e r -  

i s t l c s  r e a c h e s  t h e  S c h w a r z c h i l d  s p h e r e  i n  a t ime  wh ich  i s  i n f i n i t e  f o r  t h e  

e x t e r n a l  o b s e r v e r .  

U s i n g  ( 2 , 8 )  t o  ( 2 . 1 0 )  t h e  c o n d i t i o n  on t h e  c h a r a c t e r i s t i c s  ( 2 . 7 )  becomes 

d In  w 2 a  1 + 3 :k 0 ~ c dt d-7 (l ::k o~alc~) r ~- 4~ g = 0 (2 . t  t ) 

These conditions hold along the characteristics (2.10) 

Hence, the solution of the equations describing the gas motion is not dif- 

ficult by the method of characteristics in the Schwarzchild field. 

By passing to the limit in (2.10) and (2.11) we arrive at the equation of 

motion of a nonrelatlvlstlc gas in a gravity field. To do this, let us note 

that d in  w* d In w t d In (l - - r 0  / r) d In w ~ ~ 
d t  ~ ~ ~ 2 d t  ' a In v c 2 

Then the equation of the characteristics (2.10) takes the form r-a • 

and the condition on the characteristics becomes [3] 

da :l: (2acodt l  r - - c o d l n  v) - -  g d t  = O, g = - - k M  l r 2 
Here v Is the sI,~clflc volume; w Is the velocity of Bound $~Id g the 

acceleration due to gravlty. 
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