ON THE APPLICATION OF GENERAL
VARIATIONAL PRINCIPLES IN THE
RELATIVISTIC MICHANIOS OF AN IDEAL FLUID

(O PRIMENEMII OBSHOHIXE VARIATSIOMNYKH PRINTSIPOV
V RELIATIVISTSKOI MEKHAMIKE IDBAL'NOI ZHIDKOSTI)

PMM Vol.29, N 1, 1965, pp. 18~25

V.Ts .GUROVICH and K.P.STANIUKOVICH
{(Moscow)

(Recelved May 6, 1964)

Equations describing the motion of a continuous conducting medium in pre~
scribed electromagnetic and gravitational fields are obtalned most simply
by variation of the appropriate Lagranglans.

As a result, the variational principle leads to a second order scalar
equation; this affoeds signifilcant advantages in the analysis of the motion
of a medium as compared with the analysis of the customary equations of momen-
tum, mass and energy conservation,

The Lagranglan of an electromagnetic fileld 1s well known to have the form
(1]: . )
L, = — Fy F% [ 16m, Fy = 0A4, ] 0zt — 04, / 8" 0.1)

Here F,, and 4, are the tensor and quadri-potential of the electromag-
netic field.

We have for the Lagrangian of a continuum in the case of isentropic quasi-
potential flow [2]

Ly=p=@w—E)/v= [(‘V-—g“"SiSk——E]/v 0.2)
Here § 1s the effect for matter, £ 1se mass energy density, v the
specific volume, the pressure, g the heat content, ¢,, the metric ten-
sor components; urthermore
§; = 88 / or', eS¢ =wy, (0.3)

where o 1s the velocity of light, u, the quadri-velocity.

We will seek the equation of motion for the established form of the
Lagrangian for a continuum exactly as for the fileld

a 0V —gL,)

3 ——

e — gl ) — == 0 0.4

s (V—gLy) paC 55, (0.4)
where is the determinant of the metric tensor ¢, . In the case when
an elec%ro netic fleld 1s present, 1t is necessary Eo replace oS,

by
wu;+ (e/m) A;, after the evaluation of the derivatives, where (e/m) 1s the
mean ratio of the particle charge to the mass,

If there is no electromagnetic fleld, we obtain the continulty equation
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8 V—gs* oV —guf
____V 2 _ 0o or —k———V g =0 (0.5)

oz* vw oz v

by substituting (0.2) into (0.4).

Since v~ (w ——acz)“l’/(k"'l) for pv* = const , then (0.2) may be written as
k
L, = p = const [— ac - V_ gi""SiSk]k‘l (0.6)
Analogously, a more complex equation is hence obtained from (0.4)
- 1
o [V =gs™ \E—
N2 (Y s —ae)f T =0 (0.7)
" | Y g,

However, 1itis convenient to use the sound equation instead of (0.7).
To obtain this latter, let us write (0.5) as

SV —g oa(sn/ww)
i g, 9

vw oxr™ ox™ =0 0.8)
Since
dinw _ ®?
dno & (0-9)

where w 1s the relativistic velocity of sound, we then find from (0.8)

w? aln V= ol oS, as™
il 1 l g Vo[
25 (5,5™ (S,+S o )+<1—02)5 < " S™ 4

axt

Sn> =0  (0.10)

Equation (0,10) will be the original in the analysis of different examples
of the motion of a relativ stic medlum in the speclal theory of relativity
(section 1) and the spherically symmetrical motion in a Schwarzschlld gra-
vitational field (Section 2). It is investigated by the method of charac~-
teristics.,

It 1s convenient to use (0,10) even in the absence of a gravitational field
if the calculations are carried out in any curvilinear coordinate system,

1. As examples of the utilization of (0.10), let us consiser one-dimen-
sional nonstationary waves (Riemann waves) and two-dimensional plane station-
ary gas flow.

Let us use a Galilean metric for the menticned problems

ds® = cdt* — (dz%)?, — 8oo = 811 = 22 = B3z = 1 (@=1,2,3) (1.1)
For the chosen metric 4 In V:—g / dz! = (0 and from (0.10) we have
w2 2 A X aSk .
27511(‘9k5k)+(1—%>51[5'%51‘+—agSk]=0 (1.2)

In the one~dimensional unsteady flow case 1, ¥ = 0, 1, in which g = &'

and S,=—S° for the chosen metric. Hence, after elementary manipulations, we
find from (1.2)

2 2
(S — Sen) (52— 8o + (1 —2) (S3Se0 — 2865180y + §:281) = 0
[4 C
S8ince

S, = 388,/ oz, Soo = 08,/ 07, T =ct
we then find from the latter equation
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_?;_(8(;5; aSO)(Sl Soz)+(1__—_—) (SO Q‘SO 28,5 S;—}—Sl f5;>:()

Using a known method of change of variables, we can transform to a linear
equation from (1.3). To do this, let us divide (1.3) by the Jacoblan
8 (Se, S1) / 8 (1, z)," by rirst assuming 1t to be different from zero.

Hence we obtain (1.4)
o? /ot 0 ox
c—,(m~%)(512~502)+(1~~)( o 55 + 28081 55 aS 18,2 aS)=0

The effect § ia a quasi-potential [2], hence 05,/ dx = 05,/ dt. This
equality may be written in the form of an equality of Jacoblans, which will
yleld after having been divided by (S, S;) /9 (1, z)

ot ox

TS T Ay (1.95)

For the sequel 1t 1s expedient to introduce a functlion ¥ such that
= oY / 88, = ¥, z=0¥ /88, =¥, (1.6)
Then (1.4) will become (1.7

O (oo — Wuy) (S22 — 849 + (1— S )(So™ Wy + S1%¥oo + 25651 ¥ay) = 0

In case the Jacobian 9 (S, S,)/ 0 (T, ) equals zero, the change of vari
ables in (1.3) is impossible, However, the very fact that the Jacoblan is
zeo means that S, = f(§;). Hence

9(Sy, So) Sy Sa 051 88y __

d(x, 1)  de Ot dtr dr

which becomes, by virtue of the equality &S5,/ dx = 85,/ dt
dSy 05, asy 1.8
@ e 0 (4-8)
The solution of the latter equation 1is
T+ 1dSy/ dS, = F (S)) (1.9)
where F(Sl) is an arbitrary function of 5, determined from the boundary
conditions, In order to determine the form of the function S,= r(S,)}, let
us use the equalities
a8y dSy 485, Sy dSe 85y
dx ~ dS: oz ot~ dS ot
to help us find from (1.3)

S [958 + (1 — ) 8]+ G [(1— %) 8ot gy —

O I (12— 8ot) — 2868, (1 — %)] =0

Hence, taking (1.8) into account, we obtailn an equation to determlne g,
as a functlon of S5,
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(dSO) (Sl — 82 Cz)—]—2( 1) 1So dS, —-}~(S0 2)20 (1.10)

Before solving (1.10), let us examine the equation of plane stationary
flow of a relativistic gas. In form, this latter will agree with the equa-
tions for one-dimension&#l unsteady flow. Writing these equations jointly,
let us seek the general solution of the problems under consideration.

As 1s known, the actlon function in the case of statlionary flow may be
wrltten thus

S = —wyt + 8§ (29 (1.11)
Here a,,, are the components of the conventional velocity
Sy =—wo=—w/0, S =w,a,/c? Sy = wya, / ¢*
0 =V1—a/c (1.12)
Substituting (1.11) into (1.2) and taking into account that (see (1.12))
S° = — S840 = 0, S, =588, =82 SeS° = —S2= —w?2/c?

we find the equation for plane stationary flow
as EAYR
T (G + ) (S s =) +
oS LAY
+ (1= (5 s + TSt 28,8, 52 ) =0 (1.13)

Here we use the equality
08,/ 0x = S,/ dy (1.14)
Changing the variables in (1.13) and introducing the function W by vir-
tue of (1.14) so that £ = 9¥ /a5, = ¥,, y = 0¥/ 3S, = ¥, we obtaln

2 2
‘?T(sz -+ II)'11) <Sl2 + 85— u—;g“) +
+ (1_%2) (S1"Wap + 8,"Wyy — 25,8,¥ ) = 0 (1.15)

If the Jacobian g (S, S,) / d (z, y) = 0, the change of variables 1in
(1.13) is impossible. Then, jJust as in the case considered earlier, we have

x4y dS,/dS, = F(S) (1.16)
and the function S,= y(S,) is found from Equation
'AY c? dSs
(S (82 + 5 82° —_>+25152( —1) g5+
+ (522+ 5,2 -——62—) =0 (1.17)

Now, the equations for one-dimensional unsteady (1.7) and two-dimensional
stationary flow (1.15) may be written as one equatlon

2
%:—(WBB:E ¥ (512 + Sg? — _g_’i’ﬁ.) 4

c?

+(1— %2.) (S12W g5 -+ S W1, F 25:56W15) = 0 (1.18)
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The upper signs in (1.18) correspond to plane stationary flow when g= 2,
zg = y, Sg = S,, the lower signs to one-dimensional unsteady flow when

Pp=20 2 =1 Sg =35,
Purthermore, let us introduce the notation (see (1.12))
82+ 8,2 = w? (a) + a?) / ¢ = wy%a? / ¢t = 222 (1.19)
where %2 = wo!al / e3.

It is now expedient to introduce the following substitutions for (1.18):

S, = czsin g, S e ‘

§,~czeosq, S a ¢ (8= (1.20)
Sy = —czeoshgp, S a LA I )

Sy =cz song, — Sy = e, =S80 =02 @=0)

In the new varlables (1.20) Equation (1.18) becomes

SVt Wt Wy = b (B (Wor? + Vs £ W) (120)
in which

z= W,singp 4+ ¥,cos¢9/ z y = ¥Y,cosp —¥,sinp/z @=2)

T = — V,sinhp + W, comng / z T 2=— Wycom@ + Vypumhp/z (B=0)

Equation (1.21) 1s simplified considerably by the substitution ¢ = 1ln 2

O Wt (1~ L) et Voo = oy 5 () (Ve £ Woo)  (1.22)

22 (2
Equation (1.22) may be solved by the method of characteristics.

Let us now turn to seeking the singular solutions of the Jjoint equation
of the two problems under consideration. Combining (1.10) and (1.17) we

obtain
dSg B o dS,
() [Sl R "”')J + 28485 (5 —1) g5y +
s (S s £ =0 .29
Finding the roots of the square of the derdvative dS;/ dS; in (1.23), we
find in the case B = 0 and ¢Sy = —uw /6, ¢S, =wa /O
AT alctofc )
— I = TXela (1-24)
Substituting the result obtained into (1.9), we have
%‘/ffaﬂ'}% + F(a) (1.25)

which, as is lmown, is the equation of relativistic Riemann waves.
According to (1.12), we have from (1.23) for g = 2

f-tr- - - DE - E )
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Here it 1is assumed that |a| > w

Since ® = @ (W) = o (Bwy) = ® (a), we can determine a, as a function
of @&  from (1.26). Substituting the found function day / dax = B (ax)
into (1.16), we find the solution for generalized Prandtl-Mayer flow

z 4 yB () = F (ax) (1.27)
In conclusion, let us show how the transition from (1.21) to the customary
(nom-elativistic) equation for gas flows 1s accomplished.

In the g = O case we have from (1.21)
CRY, 4 ¥, = W, (1.28)
In the case of nonrelativistic gas flow we have
z=w/c2=1-+Fi/c¢%, @ =Arwmal/c
dz=di/c%, dp~dalc) (@<
Taking account of (1.29), let us write (1.28) as
0¥ (1 4+ 2i/cA) WYy + 1+ i/ AV = 2Ty,
Hence, as ¢ - » we have the well-known Rilemann equation

oWy + V= Yo (130)

(1.29)

whose singular solution is
z=(a +0)t+ F(a), de todlnv=20 (1.31)
In the B = 2 case we have from (1.21)
w? 2 [we\2
GV War o Voo = 5 (B) (Yt + Yoz + Wop)  (1.32)
Since p,/¢® * 1 for a<< ¢ it then follows from (1.19) that > = a/e.

Using the mentioned limiting values for y, and z , we obtain the known
equation describing stationary gas flow from (1.32).

(Waa + Yeo) (1 — 02/ a?) = 02¥,, (1.33)
For a<<c¢ we have from (1.26)
day/ day = (— axay 0 Va® — 0?) / (a,> — o) (1.34)

Substituting (1.3%) into (1.27) and assuming F(@ ) = O , we obtain the
Prandtl-Mayer solution

z/y = —day/ day = (azay FoVad —0d)/(a? —0?) (1.35)

2. The space~time 1lnterval in the Schwarzschlld gravitational field may

be written as

. ro dr? 2 2
ds = (1 — —r—)c2dt2 — ey — 7 (sin® 6dg® + db?) (2.1)
i.e, the components of the metric tensor are [1]
o= — (1 —ro/ 1), Gog = 17

gu="—ry/ 17, gs3 = 1% sin® 0 (2.2)
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To obtain the equation of motion, let us again use (0.10) in which it
should be taken into account that

a
St = P (84S5)
then we will have

Fse (=) — 2 [su (1= 2) — o + 2 (1 —2)]
(1= F) {50 (1 — ' — 28,880 4 g2y Sl
e 2.3)

4 0

Su=58, Sp= 5580 Si=wu;, S, = wu,

Here p 1s the relativistic heat content, u, the quadri-velocity. The
quantity r, is the gravitatlonal radius of the mass producing the gravita-
tional field. To simplify (2.3), let us introduce the new independent vari-

able dE =dr /(1 — ry/ 1) (2.4)
Then

( ro)Sl—SEy ( —‘rTo)zSu:SEE_%SE
After elementary manipulations, (2.3) takes the férm
2
T (S — 55 (See — Seo) + (1 *“%z) (SeeSe® — 25,8880 + SeoS¢) +
+ 2R (s —SH[F— (1+35)2]=0 (2.5)

This equation may easily be lnvestigated by using characteristics which
have the form

g2 (§B —4?)— 2848 (1 — 2 — (B —A”%’;) =0 (2.6)
and the conditlon on the characteristics
AE (j.;-”Bfs — 4%+ DE =B (B — A”Z’—;) 2.7)

Here 2B w?\ 7 ®»?
4 =8 B =S D = B 42 'l 2

o © r (B* ) [(1 3 P ) 4r c*]
and the dot denotes the total derivative with respect to time xo = ot .

Let us transform (2.6) and (2.7) to & form similar to the analogous expres
sions for the characteristics and the condition on them in the special the-
ory of relativity.

To do this, let us write 4 and p as
A =38 =gpuw/c= —w*/cb

2.8
B=Sg=(00—ry/rS;=0—ry/r)gwu/c=uw*a/c? 2.8)
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Here
0=V1—a7c wr=VI—ry/rw, a=Vot (29

and v' is the conventional velocity measured in intrinsic time [1]. Using
(2.8) we find from the equation of the characteristics {2.6)
dg=a/cim/c (2.10)
dz® 1+ wa/c?

The fundamental effect of the approximation in the Schwarzschild sphere
1s seen from the obtalned relationship. In fact, for gas moving to the cen-
ter (a=—g ) we find from (2.10)

xoa/c:}:m/c °
S’_lj:ma/czdx'

where r’ ie the value of the coordinate at the time x,'= ot’.

To

E—E =(—r)+rln (;:—) — —

"'_rO

Because of the finiteness of the integrand, we have that

.
L —1|lsc0  for ror

;
t~—"In
c ro

This latter means that any perturbation belng propagated along character-
istics reaches the Schwarzchild sphere in a time which is infinite for the
external observer.

Using (2.8) to {2.10) the condition on the characteristics (2.7) becomes

d . 2a 2\ ro w? 1o d(a)_ 2.11
Et'lnw—(1ima/cz)r[(1+3ﬁ)5_§]i(ﬁ?dt Z)=0 1D
These conditions hold along the characteristics (2.10)

Hence, the solution of the equations describing the gas motion is not 4if-
ficult by the method of characteristics in the Schwarzchild field.

By passing to the limit in (2.10) and (2.11) we arrive at the equation of
motion of a nonrelativistic gas in a gravity field. To do this, let us note

that dlnw* dlnw 1dln(i—ro/r)’ dinw __ o?
— = il

dt +2 dt alno c2

Then the equation of the characteristics (2.10) takes the form r=g + w
and the condition on the characteristics becomes [ 3]

da + (2a0dt/r —odln v) — gdt = 0, g=—kM/r?

Here p 18 the specific volume; w 1s the velocity of sound and g the
acceleration due to zravity.
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